

TRISH: Bold Science for Space Health Challenges

Kristin Fabre, Ph.D.

Chief Scientist

Assistant Professor

Center for Space Medicine

Baylor College of Medicine

WHAT IS TRISH?

The Translation Research Institute for Space Health (TRISH)

A PARTNER to NASA Human Research Program

Focused on translating disruptive approaches to reduce spaceflight hazards - we take risks, we challenge the boundaries

Funded through a **COOPERATIVE AGREEMENT** with NASA to Baylor College of Medicine

High-risk Research and Technology Development

Critical steps for our journey...

Isolation & Confinement

Distance from Earth

A MORE
CROSS-CUTTING
APPROACH TO
SPACEFLIGHT RISK

MULTIPLE PROCUREMENT MECHANISMS

HOW TRISH SEES IT

ADAPTING AND GROWING INTO A ROBUST INNOVATION INSTITUTE

PERFORM
SELF-RELIANT
MEDICAL CARE

HUMAN
HEALTH &
PERFORMANCE
RADIATION
AND OTHER
ENVIRONMENTAL
HAZARDS

OPTIMIZE

MAINTAIN PHYSICAL

& BEHAVIORAL HEALTH

BASED ON PRIORITY, DELIVERABLE, & COMPLEXITY

TRISH Areas of Investment on the Risk Spectrum

Disruptive

Translation

RISK

3

4

5

6

7

8

9

COUNTERMEASURE & TECHNOLOGY READINESS LEVEL

EXAMPLES OF TRISH-FUNDED RESEARCH

What Does TRISH Do?

TRANSLATIONAL: BLOOD BASED ANALYTICAL TOOLS

LUC GERVAIS, PH.D./1DROP DIAGNOSTICS

MEASURE 64 BIO-MARKERS

MICROFLUIDIC CARTRIDGE

DISRUPTIVE: PHARMACEUTICAL ON-DEMAND

KAREN MCDONALD, PH.D./UC DAVIS

Human Complex In Vitro Models for Radiation Countermeasures

- Galactic Cosmic Radiation (GCR) is a unique hazard associated with space exploration
- Consistent exposure in space, accumulates over the mission
- No known effective shielding against GCR

TRISH Space Radiation Solicitation (TSRAD 2020)

- Determine if complex human in vitro or ex vivo models could be an effective human analog for radiation studies; and
- **2. Test and characterize countermeasures** for efficacy against high LET ionizing radiation

- A Primary risk for space exploration
- No ideal GCR models on Earth
- What type of damage could be done to human organs?
- How concerned should we be?

How could we use human tissue models to understand GCR?

Determine if complex human in vitro models could be used as an analog for radiation response and countermeasure screening

TRAD has the following grant structure for the three years of proposed research:

- Year 1: characterizing platform for radiation research; up to \$1M TOTAL
- Year 2: countermeasure development and characterization; up to \$1M TOTAL
- Year 3: COMPLETE COUNTERMEASURE testing; up to \$1.3M TOTAL
- 3 full-funded projects, \$9.9M (TOTAL for 3 years)
- 2 partial-funded projects, \$2M (TOTAL for 2 years, possible competitive 3rd year extension)
- **1. Michael Weil, Ph.D.;** Colorado State University, Colorado *Effects of chronic high LET radiation on the human heart...*.FULL FUNDING
- **2. Gordana Vunjak-Novakovic, Ph.D;** Columbia University, New York Human multi-tissue platform to study effects of space radiation and countermeasures...FULL FUNDING
- **3. Sharon Gerecht, Ph.D.;** Johns Hopkins University, Maryland *Using human stem-cell derived vascular, neural and cardiac 3D tissues to determine countermeasures for radiation...*FULL FUNDING
- **4. Sarah Blutt, Ph.D.;** Baylor College of Medicine, Texas *Use of Microbial Based Countermeasures to Mitigate Radiation Induced Intestinal Damage...*PARTIAL FUNDING
- **5. Mirjana Maletic-Savatic, M.D., Ph.D.;** Baylor College of Medicine, Texas *Counteracting space radiation by targeting neurogenesis in a human brain organoid model...*PARTIAL FUNDING

A NOVEL APPROACH TO RADIATION RESEARCH

How is this TRISH project different from HRP radiation efforts or other tissue chip research:

- First time that normal human cells/organoids will be exposed to simulated Mars-mission relevant space radiation
- Novel human, physiologically relevant models for radiation countermeasure testing
- iPSC = personalized capabilities
- TSRAD projects collectively represent several of the radiation sensitive organs and tissues of greatest concern for deep space
- The projects will be coordinated and managed out of TRISH HQ. All data generated will be standardized, tagged, and integrated into a data matrix model, will be used to build a sensitivity profile for each "astronaut avatar on a chip"

A Bold Vision for the TRISH "Space Health for All": Chips on the Moon Could Help Us Understand Biological Hazards

How will your tissues respond to a space environment? What would be the best interventions for you?

Technical Advances for Human Tissue Chips on the Moon will Also Provide Opportunities on Earth

Real-time Readouts

Image from L. Griffith MIT

Long-term Living Tissues

Image from ncats.nih.gov

Complete Automation

BCM.EDU/SPACEHEALTH

AND MORE ON PERSONALIZED RISK ASSESMENTS

Level Ex: A Digital Human Framework for Personalized Training and Simulation

Producing known medical scenarios on ISS, replicating microgravity conditions, clinical data-to-avatar personalization development pipeline

Clinical data pipeline

- Imaging
- Genomic data
- Epigenetic data
- Biological cellular data

- Digital Human Framework
- Multiscale
 Computational
 Model Output

Personalized clinical decision support and treatment

- Identified predispositions to spaceflightassociated conditions pre-travel
- Near real-time personalized prescriptive treatment recommendations

TRISH INDUSTRY

ITERATIVE PROCESS: INDUSTRY PROGRAM 20

OPPORTUNITY

CIMIT FOCUSING ON VERY EARLY
STAGE COMPANIES

CIMIT REACHING OUT TO UNIVERSITY ENGINEERING DEPARTMENTS

CHANGE

BROUGHT IND 2020 IN HOUSE

INCREASED AWARDS UP TO \$500K

OF HEALTH INNOVATION

OUTCOME

INCREASE APPLICANT POOL BY 45%

STRONGER POOL OF APPLICANTS

IND 2020 AWARDEES

RACHNA DAHMIJA, PH.D.
Conversational Intelligent Agents
to analyze Astronaut
Behavioral Health and Performance

PHILIP STRANDWITZ, PH.D.
Development of Next-Generation
Probiotics derived from
the healthy human microbiome

JOSH RUBEN
Oculometric Cognition Testing and
Analysis in Virtual Environments
(OCTAVE)

ITERATIVE PROCESS: INDUSTRY PROGRAM 21 AND BEYOND

OPPORTUNITY

LITTLE GRANT EXPERIENCE

INCOMPLETE PROPOSALS

NOT WRITTEN FOR SPACE HEALTH

OUTCOME

HYPOTHESIS: HIGHER CALIBER PROJECTS FUNDED

RELATIONSHIPS TRISH ECOSYSTEM

UNIQUE STAKEHOLDERS

UNUSUAL INVESTORS

EARLY-STAGE COMPANIES

TRISH IND SOLICITATION

UNUSUAL INVESTORS

FREEDOM TO EXPLORE **DE-RISK**

MOTIVATIONS TO PARTICIPATE WITH TRISH

NON-DILUTIVE CAPITAL SCIENTIFIC VET

CURRENT FUNDING OPPORTUNITIES AT TRISH

Cross-sectional approach to touch multiple risks

Building tools to prepare for the UNKNOWNS

Cross-sectional approach to touch multiple risks

Building tools to prepare for the UNKNOWNS

The 2021 Biomedical Research Advances for Space Health (BRASH)

TRISH seeks ways to reversibly manipulate metabolic, homeostatic, or related processes (on a molecular, cellular, tissue, organ or whole organism level) on demand

- Maximize crew health
- Promote resilience to risks and hazards
- Support a more sustainable approach to deep space travel

Biomedical Research Advances for Space Health

BRASH 2101

- Annual budget is capped at \$500K per year (Direct + Indirect)
- Up to two years
- 10% cost-sharing minimum must be added on top of the maximum budget of \$500K per year
- 5-7 proposals anticipated to be awarded

BCM.EDU/SPACEHEALTH

FELLOWSHIP

SAFEGUARD ASTRONAUT HEALTH AND PERFORMANCE ON THE WAY TO MARS.

The Translational Research Institute for Space Health (TRISH) at Baylor College of Medicine is soliciting proposals from postdoctoral researchers ready to help solve the health challenges of human deep space exploration.

TRISH's postdoc program supports early-career scientists pursuing disruptive, breakthrough research with the potential to reduce risks to astronaut health and performance.

Selected fellows will receive a stipend for salary support, an allowance for health insurance, and funds for travel to related scientific meetings. Applicants must submit research proposals together with an identified mentor and institution.

PROPOSALS DUE JANUARY 28, 2021.

BCM.EDU/SPACEHEALTH

TRISH SCIENCE ALIGNS WITH ON-EARTH APPLICATIONS

- Low "n" = rare diseases
- Personalized medicine
- Tissue and simulated avatars to predict medical risks and recommend safe and effective treatments
- Diversity
- Degenerative scenarios
- Visual impairment
- Behavior
- Self-reliant medial support
- Diagnostic tools
- Countermeasures

Connect with TRISH
SpaceHealth-Info@bcm.edu
trish.force.com

